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Abstract 

Slow and fast light enables key functionality in various RF applications and all-optical networks. 
Semiconductor based schemes offer electrical control of velocity at very high bandwidths in an 
extremely compact device. Further they operate at room temperature and can be easily integrated 
into various optical systems. Ultra-fast non-linear processes in semiconductor optical amplifiers 
(SOAs) have been used to achieve tunable advance and delay at THz bandwidth. For a 700 fs 
pulse, we show electrically and optically controllable advance of 1.9 ps corresponding to an 
advance-bandwidth product (ABP) of 2.5. Further, by leveraging self-phase modulation in these 
devices we extend the performance to an ABP of 3.7. We develop comprehensive theory using 
density matrix approach to explain the experimental results. Our results show that an ultra-short 
pulse propagating through the SOA experiences non-linear index change due to spectral-hole 
burning and wave mixing between different spectral components. We derive analytical expressions 
for non-linear index induced by these ultra-fast processes and numerically solve the propagation of 
an ultra-short pulse through the SOA. Our theoretical predictions agree very well with our 
experimental results. Finally, we show fast light for two ultra-short pulses separated by 7.2 ps 
which demonstrates the feasibility of this scheme at high bit-rates. 
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IV. TECHNICAL REPORT 

1. INTRODUCTION 
Ability to control the velocity of light has attracted significant attention in recent times due to numerous 
applications in non-linear science, RF systems and optical communication networks [1-3]. Slow and fast 
light can be used to control the phase of an RF modulated wave at high bandwidths giving rise to true- 
time delays (TTD). TTD can be used to effectively steer an RF beam in different directions in a phased 
array antenna system and to avoid the squinting problem [4]. In an all-optical network, tunable delays 
enable a myriad of functionalities including synchronization [5], time-division multiplexing [6] and 
contention resolution in an optical buffer [1,3]. In a dispersive medium, group velocity of light (to the 
first-order approximation) can be expressed as 

vf=— (1) 
"g 

i  \       dn 
where n   = n\co) + co  is the group index, n(co) is the frequency dependant refractive index of the 

dco 
medium.    The group velocity (1) can be significantly altered by changing the group index ng, in 

particular by using the dispersion of the refractive index n(co). A large group index can be obtained near 
the center of a resonance line where there is a large gain/loss variation in a narrow frequency band [2], 
Similarly, high Q resonators can give a large group index due to their narrow line-widths [3]. Several 
schemes in various media have been realized to slow down the velocity of light significantly [7-9]. Even 
negative group velocities have been demonstrated using erbium-doped fiber amplifiers [10]. 

For several applications including fast radars and all-optical communication networks, control of 
delays at high-bandwidths is extremely desired. A useful metric to characterize the performance of a 
scheme is A/DBP (Advance/delay bandwidth product), which is equivalent to normalizing advance or 
delay with respect to the pulse duration. Using stimulated Raman scattering in an 8 mm long silicon 
waveguide, a time shift of 4 ps is demonstrated for a 3 ps pulse [11]. Wavelength conversion and the use 
of dispersive fiber yield a large controllable delay of 44 ns in a 10 Gb/sec NRZ system [12]. Schemes 



based on semiconductor systems have the advantage of providing electrically tunable delays at large 
bandwidths in an extremely compact device. Coherent population oscillations (CPO) have been used to 
achieve both slow and fast light at 13 GHz bandwidth in a quantum-dot semiconductor optical amplifier 
(SOA) [13]. When a strong pump beam and a weak signal beam (at a different wavelength) propagate in 
a SOA, beating between the two beams causes oscillations of carrier density. This creates dynamical gain 
and index gratings in the device. Interaction of the signal with the dynamical gratings results in a group 
index change for the pulse. Group index can be controlled either electrically (by changing the bias current 
of the SOA) or optically (by changing the pump power). Using this method, a group index reduction of 
10% is demonstrated in a compact 2 mm device. Tunable delays using exciton resonance takes advantage 
of strong coulomb interaction between free carriers and excitons in GaAs semiconductor quantum wells 
[14]. Optical injection of free-carriers changes the exciton resonance spectrum, hence the group velocity 
of a pulse can be controlled optically. DBP greater than 2 is achieved for an 8 ps pulse using heavy-hole 
exciton resonance. Gain saturation in quantum dots has also been used to achieve a DBP of 0.4 for an 
ultra-short 170 fs pulse [15]. In this paper, we review our previous theoretical and experimental work 
towards achieving a large A/DBP at THz bandwidth in an extremely compact device (< 1 mm). Using 
ultra-fast non-linear process in quantum-well semiconductor optical amplifiers we demonstrated 
electrically and optically controllable ABP of 2.5 for a 700 fs pulse [16]. We propose a novel scheme to 
extend the ABP to 3.7 using self-phase modulation in these devices. 

2. ULTRA-FAST NON-LINEAR PROCESSES IN SEMICONDUCTORS 
An ultra-short pulse propagating through a semiconductor optical amplifier (biased in a gain region) 
removes the "cold" electrons and holes via stimulated emission [17]. This creates a spectral hole in the 
carrier distribution (Fig. la). Carriers then relax to equilibrium carrier distribution at the lattice 
temperature via ultra-fast processes: carrier-carrier scattering and carrier-phonon scattering. Carrier- 
carrier scattering (Fig. lb) involves relaxation of electrons near the spectral hole to thermal equilibrium 
(Fig. 1 c) at a temperature higher than the lattice temperature. Then, carriers relax to lattice temperature 
by carrier-phonon scattering process (Fig. Id). Eventually, the density of electrons and holes recovers 
through carrier injection (Fig. le). Typical time scale of carrier-carrier scattering and carrier-phonon 
scattering is dependent on material systems, device design and the operating wavelength. In our devices, 
we measured a relaxation time of 830 fs and 3.3 ps for carrier-carrier scattering and carrier-phonon 
scattering respectively [15]. The spectral hole created by an ultra-short pulse propagating through the 
SOA is sustained over carrier-carrier scattering time. This spectral hole in carrier distribution is 
equivalent to a spectral hole in gain distribution. Through Kramers-Kronig relations, a frequency 
dependant gain caused by the spectral hole translates to a frequency dependant index change, and 
correspondingly to a change of the group index for the pulse. In this case, a dip in gain spectrum results in 
fast light for the pulse. Further for an ultra-short pulse, beating between several frequency components 
results in intra-band population oscillations [18] similar to CPO described earlier [8, 13]. This finally 
leads to an additional change of the group index for the pulse. Recently, we showed that this additional 
contribution results in a larger advance for the pulse [19]. Similarly, an SOA biased in a loss region 
experiences a delay due to these non-linear processes. Index change induced by these processes depends 
on the gain in the device. Hence, pulse delay and advance can be tuned electrically by changing the 
applied bias to the SOA. 

3. EXPERIMENTAL DEMONSTRATION OF SLOW AND FAST LIGHT 
Figure 2 shows the schematic of the set-up to realize fast light in semiconductor optical amplifiers [16]. A 
mode-locked fiber laser operating in C-band acts as a sub-picosecond pulse source. The pulses have a 
FWHM of 700 fs with a repetition rate of 25 MHz. The output of the fiber laser is split into two branches. 
The 99% branch acts as a reference and goes through a delay line before entering the cross-correlator. The 
power of the signal (1% branch) entering the SOA is controlled using a variable attenuator. Polarization 
of the signal is adjusted to align with the principal gain axis of optical amplifier. The SOA used in this 



experiment is a quantum well device from JDSU operating at 1550 nm with a small signal gain of 20 dB 
at a bias current of 200 mA. The output of the SOA goes through an EDFA before entering the cross- 
correlator. Cross-correlation with the reference enables recording of pulse amplitude and advance as the 
SOA current is increased. 

The energy of the 700 fs pulses at the input of SOA is ~ lpJ. Fig. 3 shows normalized cross- 
correlation traces as SOA current is increased from near transparency (50 mA) to maximum gain (200 
mA). It should be noted that cross-correlation traces appear broader than the actual pulse due to finite 
width of the reference. We see a large advance (T) of 1.9 ps with increasing current. This corresponds to a 
normalized advance (T/AT;„, where AT is the FWHM of the pulse) or ABP of 2.5. Larger advance with 
increasing SOA current can be explained by the theory described earlier. As SOA gain increases, depth of 
the spectral hole created by the pulse and the strength of intra-band population oscillations increases. Both 
of these effects contribute to a larger index change for the pulse. Tunable advance of 1.9 ps in a 1 mm 
long device corresponds to a significant non-linear index change of -0.6 at THz bandwidth. Here it's 
worth mentioning that even though the pulse experiences fast light, the index change is less than the 
refractive index (n ~ 3.5) of the medium. Hence causality is not violated in this scheme as the pulse still 
propagates with a positive group velocity in the medium. Fig. 4 shows the amplitude change as a function 
of SOA current. The amplitude change as the SOA current is increased from 50 mA to 200 mA is less 
than 11 dB. The amplitude variation is much less than the variation of the small signal gain with bias 
current (20 dB) because the device is operating under the saturation regime due to the large peak power of 
the pulse. It is interesting to note that achieving an ABP of 2.5 using a slow light scheme based on group 
index change over a resonance line requires an extremely large impractical gain of 6200 dB [21]. By 
using non-linear processes in SOAs, we can achieve the same ABP with gain change of less than 11 dB. 
Pulse broadening (defined as (ATout-ATin)/AT,n) is also plotted as a function of SOA current. Pulses at the 
output appear broader due to the large amount of fiber present in various fiber based components 
including SOA and EDFA. However, pulse broadening due to fast light effect varies only by 50% as the 
SOA current is varied. Pulse peak amplitude decreases as current is increased beyond 100 mA as a result 
of pulse broadening due to fast light effect. 

By operating the SOA in loss region, we expect to see a large delay. Fig. 5 shows normalized 
cross-correlation traces for a 600 fs input pulse, as the current is decreased from near transparency (50 
mA) to loss region (20 mA). We see a large delay of 0.75 ps. As expected, increasing the current from 50 
mA to 100 mA gives an advance of 0.77 ps. Combining the results of advance and delay, we achieve a 
continuous tunable shift of 1.52 ps corresponding to an ABP of 2.5. In this case, we used a higher input 
power so that we can detect the signal in loss region. As a result, pulse is broadened at large currents. A 
more sensitive cross-correlator would enable us to achieve the same ABP without increased broadening. 

Pulse advance can also be optically controlled by varying the input power. Since the depth of the 
spectral hole is proportional to pulse power, we expect to see an advance with increasing input power. A 
constant SOA bias of 100 mA is used in this experiment. Fig. 6 shows the time traces as the pulse energy 
of a 700 fs pulse is increased by three orders of magnitude from lfl to lpJ. A large ABP of 1.5 is 
observed in this case. An EDFA at the output of SOA can be used to maintain a constant output power as 
the input power is varied. 

4. FAST LIGHT USING CASCADED SOAs 
In this section, we investigate the possibility of increasing the advance for an ultra-short pulse by 
cascading two SOAs. Experimental set-up is similar to the one shown in fig. 2 except isolators are added 
to prevent ASE from second SOA entering the first SOA. The current of each of the SOAs is controlled 
independently. Figure 7 shows the cross-correlation traces for a 600 fs pulse with increasing SOA current. 
From the time traces it's evident that as the current of the first SOA is increased keeping the other 
approximately constant, a large advance for the pulse is observed. By increasing the current of the second 
SOA, we obtain additional advance. A total advance of 2 ps for a 600 fs pulse corresponds to an ABP of 
3.3. When we increased the current to higher values than shown in the figure (> 100 mA), we observed 



pulse distortion and the appearance of the pedestal. This distortion could be a result of high peak power of 
the pulse entering the second SOA. As mentioned earlier, as the SOA gain increases, depth of the spectral 
hole created by the pulse increases. A deeper spectral hole results in a large index change and hence an 
advance for the pulse. However, the maximum depth of the spectral hole saturates when the peak power 
of the pulse is large enough to drive the local carrier concentration to transparency. Increasing the current 
beyond this value causes significant distortion for the pulse and results in a pedestal. 

Comparing the ABP of 3.3 for two SOAs with the earlier result of 2.5 for a single SOA shows 
that cascading multiple SOAs results in higher ABP. However, as the number of SOAs is increased, the 
incremental benefit of adding additional SOA diminishes. This is mainly due to the coupling of amplified 
spontaneous noise from one SOA to the other which reduces the available gain in the second SOA and 
also adds noise to the signal. Further, pulse broadening from each of the SOAs contributes to 
deterioration of performance. These problems can be mitigated by adding attenuators, optical filters and 
dispersion compensators after each SOA. By adding variable attenuator after each SOA, input power of 
the pulse entering the SOA can be controlled which helps in reducing the distortion at high SOA currents. 
Optical filter aids in removing the unnecessary spontaneous emission contribution from one SOA entering 
the next SOA whereas dispersion elements compensate for the broadening induced by the fast light effect. 
To understand the potential and limitation of cascading multiple SOAs, we propose a novel scheme based 
on an SOA in a loop configuration that uses a single SOA to mimic the effect of cascading multiple 
SOAs. 

The experimental set-up for this scheme is shown in fig. 8. The output of the fiber laser is split 
into reference and signal. Signal pulse enters the 10% branch of the input 90:10 splitter and passes 
through the SOA. The output of the SOA is further split using a second 90:10 splitter. The 90% branch 
goes through the EDFA before entering cross-correlator while the 10% branch goes through a variable 
attenuator before entering the 90% branch of the input splitter. The two splitters combined with the SOA 
form a loop configuration. Hence, the signal pulse goes through the SOA multiple times. In this case, 
variable attenuator is adjusted so that there is a net loss in the loop which prevents lasing in the loop due 
to ASE. Hence, amplitude of the pulse going through the SOA multiple times diminishes. By adjusting 
the fixed delay arm of the reference, we can selectively observe the advance of the pulse that has gone 
through the SOA multiple times. Figure 9 shows the cross-correlation traces for a single-pass pulse and a 
double-pass pulse. For a single-pass pulse, increasing the current from transparency to 100 mA gives an 
advance of 0.64 ps. However, the advance for a double-pass pulse is increased to 1.17 ps which is roughly 
double the advance for a single-pass pulse which clearly demonstrates the improvement in performance. 
However, pulse broadening for this case is also roughly twice compared to single-pass case. Increasing 
the current beyond 100 mA causes lasing in the loop due to ASE. By inserting an optical filter to remove 
ASE, higher SOA currents can be used which will give more advance for the pulse. By adding a 
dispersion compensator in the loop, pulse broadening and distortion can be significantly reduced. 

5. THEORY AND SIMULATION RESULTS 
Propagation of an ultra-short pulse through a semiconductor optical amplifier can be modeled using the 
density matrix equations for a semiconductor and the propagation equation for the pulse [18, 20]. 
Numerically solving the full density matrix equations, which describe detailed population and 
polarization dynamics for each carrier state and optical transition in semiconductor is computationally 
intensive and doesn't yield considerable insight into the physics of the problem. For these reasons, we 
solve the equations analytically using adiabatic approximation with the first-order correction over the 
parameter r2/

7«ito (r2 's tne dephasing time, r . is the pulse duration) in order to include non- 

adiabaticity [20].  Finally, we obtain the analytical expressions for non-linear group indices due to ultra- 



fast processes [19] described earlier [Sec. 2]. The contribution to the group index due to optical transitions 
in semiconductor can be expressed as 

Ang = An*n + An?" + An•     (2) 

where An1'" = Afl   (N) is the "linear" contribution to the group index related to the dependence of 

"linear" gain g,m = g/,„{N,o>) on the photon frequency co, where N is carrier density. Ans"h, Anc
g
H are 

the non-linear contributions to the group index due to spectral-hole burning and carrier heating 
respectively. Assuming that the SOA gain bandwidth is much larger than l/r2, the contribution from 
SHB can be written as 

Anf = AnfB~DW + An?"-*•, 

J"B-D,p=-r2cglm.sSHHSIA 

An. =-3r2cglm.£SHBSIA        (3) 

where  An' is the contribution from the creation of spectral hole in an otherwise broad gain 

spectrum.  £SHH is gain suppression factor due to SHB and S is the photon density.  Ans"li~l'WM \s the 

contribution from wave-mixing between different components of the pulse that leads to intra-band 
population oscillations. These oscillations in turn lead to oscillation of the depth of spectral hole which 
gives a group index change for the pulse similar to CPO [8, 13]. Contribution from carrier heating can be 
expressed as 

An(
g
H =-rhcglm.sCHS (4) 

where rh is the carrier heating time. Using the group indices (2, 3), we solved the propagation equation 

for the pulse. Results of the simulation shown in Fig. 10 elucidate the importance of non-linear effects. 
Input into the SOA is a hyperbolic secant with a FWHM of 700 fs. Using a simple gain saturation model 
by neglecting the contributions from SHB and CH [22] shows an advance of 0.5 ps. However, for an 
ultra-short pulse gain suppression due to non-linear effects is extremely important. Taking into account 
the nonzero gain suppression (eSHB *0,£CH ^0) while neglecting the contribution due to nonlinear 

group index (An   —> 0) leads to an advance of only 0.2 ps.  However, including the index change due to 

non-linear effects yields a large advance of 1.4 ps corresponding to an ABP of 2.0. Pulse shape at this 
condition shows strong self-steepening due to the nonlinear group indices. This strong self-steepening is 
because of the first-order correction to the pure adiabatic consideration of intra-band carrier dynamics 
[19]. Solving the pulse propagation equation with higher order corrections yields a better pulse shape as 
we will show in the latter part of this paper. 

6. ENHANCING ABP USING SHORTER PULSES 
As the pulse-width decreases, spectral hole created by the pulse doesn't relax significantly during the 
pulse transit time. Hence, the pulse experiences significant fast light due to the spectral hole which 
contributes to larger advance. Further, changes in carrier density and carrier temperatures result in a 
refractive index change, and correspondingly in a phase change for the pulse which is usually referred to 
as self-phase modulation (SPM) [20, 21]. Large line-width enhancement factors due to carrier density 
(an) and carrier temperature (aT) [21] in SO As contribute to large SPM. In an SOA biased in gain region, 
a reduction in local carrier density due to pulse propagation causes a red shift (longer wavelengths) for the 
pulse. Figure 11 shows the wavelength shift caused by SPM for different SOA currents. As expected, red 
shift increases with increasing SOA current [20]. At an SOA current of 100 mA, we see a red shift of 6 
nm. By adding dispersive elements after the SOA, we can leverage SPM to achieve larger advance. Here 
the term "dispersive element" is used emphasize the fact that the group delay through the element is a 



function of frequency. Hence, a change in frequency due to SPM with increasing SO A current translates 
to a time shift for the pulse. In this experiment, we use a grating based chirper that introduces a time shift 
which changes linearly with frequency. Hence, we refer to this as linear chirper. Chirper in this case also 
helps in obtaining a better pulse shape by compensating for SOA induced chirp. Total advance through 
the system can be mathematically expressed as 

*adv = *NL + '•SPM w) 

where Tm is advance due to non-linear effects (SHB and CH) and TSPM is the advance due to SPM. Both 

of these time shifts are a function of SOA current and hence can be controlled electrically. 
Experimental set-up is similar to the one described earlier except a chirper is added after the SOA 

to leverage SPM. Fig. 12 shows the cross-correlation traces as a function of SOA current for a 190 fs 
input pulse. A total advance of 0.71 ps is observed as the current is increased from transparency (50 mA) 
to maximum gain (300 mA) corresponding to a large ABP of 3.7. Amplitude variation is less than 10 dB 
as the current is varied. Value of chirp is chosen so as to obtain an optimized pulse shape and fixed a 
particular value as the current is varied. Pulse broadening for this case is less than 100%. 

Figure 13 shows the advance and ABP as pulse-width is swept from 1 ps to 86 fs. Peak power is 
maintained constant as the pulse-width is varied because the non-linear index change is dependent on 
peak power. Advance increases almost linearly with increasing pulse-width. However, ABP increases as 
the pulse-width decreases. A maximum ABP of 6.5 is achieved for the lowest pulse-width of 86 fs. 
However, for this case the maximum broadening is close to 250%. This broadening is a result of large 
amount of fiber in our EDFA and due to the fact that the linear chirper employed in this experiment 
cannot exactly compensate for non-linear chirp induced by the SOA. Tailored chirpers can be employed 
to obtain a better compensation. 

We simulate pulse propagation in SOA using density matrix approach described earlier and 
propagation through the chirper by adding a quadratic phase as described in [22]. Figure 14 shows the 
simulation results for a 190 fs pulse as the linear gain is increased from 0 dB to 30 dB corresponding to an 
SOA current of 50 mA and 300 mA respectively. From the simulation, we observe an advance of 0.71 ps 
which agrees very well with our experimental results. Further, time traces at higher current doesn't show 
self-steepening compared to earlier case (Fig. 10) because of the inclusion of higher order terms. 

7. FAST LIGHT FOR TWO PULSES IN SUCCESSION 
For applications related to optical networks, it is desirable to achieve a large ABP for a train of pulses. 
Experimental results presented here so far have been focused on achieving a large ABP for a single pulse. 
Here, we present experimental results for two pulses successively entering the SOA. A large ABP for 
both the pulses can be achieved if the carriers depleted by the first pulse relax quickly enough before the 
second pulse enters the SOA. The SOAs used in this study have an extremely fast gain recovery time of 
25 ps. Hence, we expect to see a large advance for both the pulses. Output of our fiber laser shows a pre- 
pulse before the main pulse. The pulses are separated by 7.2 ps as shown in fig. 15. As the current is 
increased, we observe a large advance for both the pulses. For the pre-pulse, an advance of 1.16 ps is 
observed as the SOA current is increased from transparency to maximum gain corresponding to an ABP 
of 1.84. Even in the presence of pre-pulse, an advance of 1.72 ps is observed for the main pulse as shown 
in fig. 16. This corresponds to a large ABP of 2.72. Advance for the pre-pulse is smaller than for the main 
pulse because the lower input power. As explained earlier, a low input power results in a smaller advance 
because the spectral hole created by the pulse is not very deep. Varying the pre-pulse amplitude and the 
distance between the pre-pulse and main pulse will provide further insight regarding the potential of this 
scheme at high bit-rates. 

8. CONCLUSION 
Ultra-high bandwidth slow and fast light is extremely useful in various RF systems and future generation 
all-optical networks. Using ultra-fast non-linear processes including spectral-hole burning and carrier 
heating, we demonstrate a large ABP of 2.5 for a 700 fs pulse. This advance can be either controlled 
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electrically by changing the SOA bias or optically by changing the input power. Our theoretical results 
show that the index change is mainly due to two effects: spectral hole created by an ultra-short pulse and 
wave mixing between different spectral components of the pulse. Self-phase modulation in SO As can be 
leveraged to achieve larger advance by employing a chirper after the SOA. Using this scheme, we 
demonstrate a tunable advance of 0.71 ps for a 190 fs pulse corresponding to an ABP of 3.7. Theory 
developed using density matrix approach is used to accurately simulate the ultra-short pulse propagation 
in our optical amplifiers. Finally, we demonstrate significant fast light for two 630 fs pulses separated by 
7.2 ps. 
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Figures 
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Fig. 1. Schematic showing the response of semiconductor medium biased in a gain region to an ultra-short pulse. An 
ultra-short pulse burns a hole in carrier distribution (a). Carrier-carrier scattering and carrier-phonon scattering are 
ultra-fast processes that restore the carriers to intra-band equilibrium in a pico-second time scale. Carrier-carrier 
scattering causes carriers to reach intra-band equilibrium at a temperature higher than lattice temperature (b,c). 
Carrier-phonon scattering then relaxes the carriers to lattice temperature (d). Electrons and holes eventually reach 
equilibrium through carrier injection (e). 

Fig. 2. Experimental set-up to realize fast light in semiconductor optical amplifiers. Output from the mode-locked 
laser is split into reference (99%) and signal (1%). Time shift of the signal is controlled by changing the SOA bias. 
As the SOA gain is increased by increasing the bias, the pulse experiences an advance. Similarly, when the SOA 
bias is decreased below transparency, the pulse experiences a delay. 

z 1 
o 

1.9 ps 
4 1 — 200 rtiA 

— 100 mA 
V      — 70 mA 

*m^t^.            I.I. 

O^—- 50 mA 

-2 0 
Time (ps) 

13 



Fig. 3. Cross-correlation traces as the SOA current is varied. Cross-correlation traces appear broader than the actual 
pulses due to finite width of reference (700 fs). A large advance of 1.9 ps is observed for a 700 fs pulse as the SOA 
current is increased from transparency (50 mA) to maximum gain (200 mA). This corresponds to an ABP of 2.5. 
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Fig. 4. Amplitude change and pulse broadening as the SOA current is varied. Amplitude change as the current is 
increased from 50 to 200 mA is less than 11 dB. The amplitude variation is much less than the linear gain (20 dB) 
because the pulses saturate the amplifier at a current of 100 mA. Pulses at the output are broader due to dispersion in 
various fiber based components. However pulse broadening variation due to fast light effect is less than 50%. 
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Fig. 5. Cross-correlation traces for a 600 fs input pulse. A large delay of 0.75 ps is observed as the SOA current is 
decreased from transparency (50 mA) to loss region (20 mA). As the SOA current is increased from transparency 
(50 mA) to gain region (100 mA), a large advance of 0.77 ps is observed. A total time shift of 1.52 ps corresponds to 
an ABP of 2.5. 
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Fig. 6. Time traces for a 700 fs input pulse at a SOA bias of 100 mA as the input power is increased. An ABP of 1.3 
is achieved as the pulse energy is increased from 1 0 to 1 pJ demonstrating the feasibility of optical tuning. 
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Fig. 7. Cross-correlation traces for a 600 fs pulse passing through two cascaded SOAs. The numbers indicate the 
bias current of each SOA in mA. An advance of 2 ps is observed as the bias current is varied continuously 
corresponding to an ABP of 3.3. Comparing this result with the earlier reported ABP of 2.5 for a single SOA 
demonstrates the scalability of this scheme. Increasing the current of the SOAs to larger values (>100 mA) results in 
pulse distortion due to high power of the signal pulse at the input of second SOA. 

Fig. 8. Experimental set-up to investigate the scalability of this scheme using cascaded SOAs to achieve larger pulse 
advance. By using 90:10 splitters before and after the SOA, the signal pulse can be made to go through SOA 
multiple times. By adjusting the delay line in the reference arm, we can selectively measure the advance of a pulse 
that has gone through multiple times. Attenuation of the variable attenuator is adjusted so as to prevent lasing in the 
loop. 
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Fig. 9a. Time traces for a pulse propagating through the SOA once (single-pass) as the SOA current is increased. A 
maximum advance of 0.64 ps is observed. Fig. 9b. Advance for a pulse propagating through the SOA twice (double- 
pass). An advance of 1.17 ps for this case is roughly twice that of a single-pass pulse. However, pulse broadening is 
also roughly twice that of a single pass pulse. Increasing the current beyond 100 mA causes lasing in the loop due to 
ASE. By adding optical filters and dispersion compensators in the loop pulse advance can be increased while 
reducing the pulse broadening. 
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Fig. 10. Results of the simulation for a 700 fs pulse (blue curve) propagating through an SOA with a linear gain of 
30 dB. A dephasing time of 100 fs and a carrier heating time of 650 fs is used in this simulation. When we neglect 
the contribution due to non-linear effects, we see an advance of 0.5 ps (magenta curve) corresponding to an ABP of 
only 0.7. Modification of the model to include non-linear gain decreases the advance to 0.2 ps (green curve) due to 
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non-linear gain suppression. However, including the gain and index change due to SHB and CH gives a large 
advance of 1.4 ps (ABP 2). 

1.0  - 

£ 
k_ 

-4—' o 
Q) 
Q- 

CO 
"O 
<D 
N 

0.5 

0.0 

Input 
- 60mA (norm) 
• 80 mA (norm) 
•100 mA(norm) 

1536 1544 1552 

Wavelength (nm) 
1560 

Fig. 11. Spectra for a 370 fs pulse for various SOA currents at an input pulse energy of 4 pJ. An increasing SOA 
current causes a red shift for the pulse due to self-phase modulation. At an SOA current of 100 mA, a red shift of 
6nm is observed. Oscillatory structure observed in the spectrum at high currents is typical of non-linear processes. 
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Fig. 12. Cross-correlation traces for a 190 fs pulse as a function of SOA current. We observed a large tunable 
advance of 0.71 ps corresponding to an ABP of 3.7. Amplitude variation is less than 10 dB and pulse broadening is 
less than 100% as the current is varied. 
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Fig. 13. Advance and ABP as the pulse-width is varied by an order of magnitude (86 fs to 1 ps). Peak power of the 
pulse is kept constant as the pulse-width is varied. As expected, ABP increases with decreasing pulse-width. For an 
86 fs pulse, we observe an ABP of 6.5. However, maximum pulse broadening for this case is 250% due to large 
amount of fiber in our EDFA. Further, linear chirpers employed in this scheme cannot exactly compensate for the 
non-linear chirp induced by the SOA. Pulse broadening can be reduced by employing tailored chirpers. 
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Fig. 14. Results of the simulation (dotted curves) for a 190 fs pulse as the SOA current is increased from 
transparency (50 mA) to maximum gain (300 mA). A tunable advance of 0.71 ps is obtained corresponding to an 
ABP of 3.7 which agrees very well with our experimental results (solid curves). 

Fig. 15. Cross-correlation traces for two pulses entering the SOA. The pre-pulse is separated from the main pulse by 
7.2 ps. As the SOA current is increased, we observe a large advance for both the pulses. 
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Fig. 16. Cross-correlation traces for the main pulse with increasing current. Even in the presence of a pre-pulse, a 
large advance of 1.72 ps corresponding to an ABP of 2.72 is observed. 
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